SANTA FE, N.M. — The Japanese space agency JAXA has set a mid-February date for the return to flight of the H3 rocket, nearly a year after the vehicle’s first launch failed.
JAXA announced Dec. 27 that the second launch of the H3 was scheduled for no earlier than Feb. 14 (Feb. 15 Japanese time) from the Tanegashima Space Center. The launch period for the mission, designated H3 Test Flight No. 2 or H3TF2, extends through the end of March.
The launch will be the first for the H3 since its unsuccessful inaugural flight March 7. On that launch the first stage appeared to perform as expected but the engine in the second stage failed to ignite, triggering the vehicle’s flight termination system.
Neither JAXA nor Mitsubishi Heavy Industries (MHI), the prime contractor for the H3, have disclosed many details about the cause of the failure. Because the second stage engine is similar to the one used on the existing H-2A, a launch of that vehicle carrying the XRISM X-ray astronomy satellite and SLIM lunar lander was delayed from May to September.
Iwao Igarashi, vice president and general manager of MHI, said at the World Satellite Business Week conference in September that the investigation into the H3 failure was completed in August but did not discuss what that investigation revealed.
“We defined the corrective actions and some of them applied to the H-2A launch vehicle,” he said at the conference, which took place less than a week after that vehicle launched XRISM and SLIM. “The next step is we are working hard to prepare for the return to flight” of the H3, which at the time he said was planned for late 2023.
A change for the second H3 launch will be the payload. For the first launch, JAXA flew the ALOS-3 Earth observation satellite, a spacecraft that cost about $200 million. The agency faced sharp criticism after the failure for placing a valuable spacecraft on the rocket’s first flight.
The upcoming H3 launch will instead carry a test payload, called the Vehicle Evaluation Payload-4. The mission will also carry two smallsat secondary payloads. One, CE-SAT-1E, is an Earth imaging spacecraft developed by Canon Electronics. The other, TIRSAT, is a cubesat built by Japan Space Systems with an infrared Earth observation instrument.