WASHINGTON — SpaceX has added more than $300 million to a fundraising round announced earlier this year to support continued work on its Starship launch system and Starlink satellite constellation.
In an amended filing with the U.S. Securities and Exchange Commission April 14, the company revised a filing in February that disclosed raising $850 million. The company says it has now raised $1.164 billion.
The company didn’t provide details on the source of the additional $314 million. The filing stated that 99 investors participated in the round, compared to 69 in its February filing about the round. The filing also didn’t disclose terms of the financing, although reports in February indicated that new round valued SpaceX at $74 billion, a significant increase over earlier round.
SpaceX raised $1.9 billion in its previous funding round in August 2020. It has raised more than $6 billion in equity to date.
Much of that investment has gone to support two high-profile, and high-expense, projects SpaceX is pursuing. One is the Starlink constellation of broadband internet satellites the company is currently deploying, with about 1,350 satellites currently operational.
In an April 14 talk at the SpaceTech conference by the Massachusetts Institute of Technology’s Department of Aeronautics and Astronautics, Gwynne Shotwell, president and chief operating officer of SpaceX, reiterated comments she made earlier this month that the company will soon have enough satellites in orbit to provide global coverage.
“With Starlink, we anticipate having full global connectivity, consistent global connectivity, a few months after our 28th launch,” she said, a milestone she anticipated reaching “late this year.” An April 7 launch was the 23rd of the company’s v1.0 Starlink satellites. “We will continue to add capacity with additional satellites after that. We will continue to improve our technology, and basically get more beams on the ground.”
Among those technology improvements is the incorporation of laser intersatellite links. Shotwell said the company has already tested two generations of that technology on some of its satellites. “The first ones that we flew were very expensive. The second round of technology that we flew was less expensive,” she said.
A third generation of laser intersatellite links will start flying “in the next few months,” she said. She didn’t elaborate on those plans, but it’s likely those will be included on satellite the company is preparing to launch to polar orbits. The new technology, she said, will be able to operate over longer distances and provide high bandwidth, while being “much less expensive” than earlier versions.
SpaceX’s other capital-intensive project is its Starship launch system. The company has flown, and destroyed, four Starship prototypes on suborbital test flights in recent months, most recently March 30. A new Starship prototype, SN15, recently arrived on the launch pad at SpaceX’s Boca Chica, Texas, test site for a flight test that could happen as soon as late this month.
“Starship is an amazing machine. I could not be more excited about a vehicle than I am about Starship,” Shotwell. “That is the vehicle that will take people in great numbers to the moon, to Mars.”
Despite a test campaign that has so far been filled with vehicle explosions, she remained optimistic that the vehicle will be ready to fly people within several years. “I believe we will be flying large numbers of people on Starship in five years,” she said, including point-to-point transportation between two locations on Earth, a concept SpaceX first discussed in 2017.
Asked by Dava Newman, an MIT professor and former NASA deputy administrator, if that meant SpaceX would be ready to send people to Mars by 2030 to 2035, Shotwell offered a more aggressive schedule. “We’re shooting for before 2030. It might end up taking that long, but I hope not,” Shotwell said.
That timeline, she said, was based on the experience she expected the company to build up flying people on point-to-point and lunar Starship missions. “You’re flying enough where you hopefully have enough knowledge of the system and knowledge of risk that you can definitely start the journey to Mars within the next five years.”
“I recognize,” she added, “we never make our timelines, so they’re aspirational. But you have to aim high.”