Kymeta mTenna
Kymeta is releasing its metamaterials-based flat-panel antennas as both the standalone mTenna and the packaged KyWay terminal. Credit: Kymeta

LONDON — The first 400 flat-panel antennas developed by Redmond, Washington-based Kymeta Corp. have been shipped to customers in the past months as the company predicts 2018 to be the year when the long-awaited technology starts making impacts across a range of sectors that have not used satellite links before.

Speaking at the VSAT Global conference in here Sept. 20, Kymeta’s chief commercial officer Bill Marks said the company has received thousands of orders of its 70-centimeter Ku antennas and will start mass production next week on an assembly line in California.

“We have antennas in eight different platforms, in five different verticals, most of which are mobile, one is fixed,” Marks said. “We are seeing antennas going on trains, buses, boats and automobiles, construction sites, first responders and agriculture.”

Marks also confirmed his company has been talking to OneWeb and other LEO constellation developers. However, he refused to elaborate.

Also speaking at VSAT Global, David Garrood, chief strategy officer at Kymeta’s competitor Phasor Solutions, said his company is pursuing a similar timeline for introducing its own flat-panel antennas and foresees entering the commercial market in 2018.

“Sets are being fabricated as we speak, we will get them ready by the end of the year and then there will be a number of systems in real users’ hands next year,” he said. “2018 is going to be the real year when I suppose flat-panel antennas to really come into the market.”

Garrood said the company is currently testing its technology at a site in Yorkshire, U.K., simulating deployment on a mobile platform.

Garrood and Marks agreed flat-panel antennas, also called electronically steered antennas, will not, in the early stages, compete with conventional satellite dishes but rather target new markets that didn’t use satellite links before.

“There are lots of platforms that have not been able to take advantage of satellite before because of the nature of the platform,” said Marks. “Train is a good example of that. You can’t put a mechanically steered antenna on top of a train because in a tunnel it would get knocked off so we are seeing a great success in markets that have never really used satellite before.”

According to Marks, 19 percent of the antennas ordered from Kymeta are supposed to go to markets that have not used satellite before. He said the company is also considering developing a range of smaller sizes including 40-centimeter and 20-centimeter antennas.

The antennas, manufactured using similar technology used in the production of LCD displays, would also benefit satellite operators due to the simplicity of the steering mechanism, which completely lacks moving parts.

According to Marks, however, the greatest potential for the technology to expand is in the connected car sector.

“The automotive industry is moving towards satellite,” Marks said. “We are in conversations with large mobile operators that recognise that the connected car needs a satellite component in order to be successful. It’s a really interesting time for the industry.”

When questioned on affordability and performance of the technology, Marks compared the first-generation flat-panel antennas that are just entering the market to early mobile phones.

“It was expensive, it was heavy, the batteries were terrible but everybody when they first bought it thought it was a revolution and it changed their lives,” he said.

“The first flat panel antennas are going to revolutionize the industry, they are going to open new markets but they are not sold on performance. We are looking into markets that will be interested in the first generation of the product and we will continue innovating, improving performance, making it lighter, smaller.”

Flat-panel antennas, he said, will not be competing with parabolic dishes for several years.

Mark Steel, senior director of user terminal development at Inmarsat, who was on the same panel, questioned the 2018 timeframe.

“In 2014, we were hearing that it’s coming next year, same in 2015, same in 2016,” he said. “Let’s hope 2018 is real as it seems to be a recurrent theme that it’s coming next year.”

He also questioned the usability of the current systems for use on aircraft, which is one of the markets the makers hope to target.

“Over the past three years, we have been involved with probably 15 to 20 technologies and the bottom line is that it can’t do what we want,” Steel said. “It can’t meet our end-user requirements – the cost, the scalability, there have been a lot of issues around that. We can’t get what we want and then of course you’ve got this big price tag.”

Marks said he believed there is potential for future cost reduction through mass production on lines designed primarily to make LCD displays, of which there are hundreds around the world.

“One display line can manufacture 25,000 satellite antennas per day and there are hundreds and hundreds of display lines around the world,” he said. “The capability exists to build antennas at scale and that would allow us to offer prices that could be acceptable to consumers.”

Tereza Pultarova is a London-based science and technology journalist and video producer, covering European space developments for SpaceNews. A native of the Czech Republic, she has a bachelors degree in journalism from the Charles University,...