WASHINGTON —


It was Dec.




21, 1964, and a mid-level U.S. Air Force officer named David Bradburn was at Vandenberg Air Force Base in California for the launch of a unique satellite. Bradburn, who eventually retired as a major general and a senior official in the U.S. National Reconnaissance Office (NRO), was the satellite’s program officer, and although other people had direct responsibility for the launch, it was Bradburn’s baby.

A railroad track runs along the picturesque coast at Vandenberg




, right through the base




, and the launch pads are inland, meaning that the rockets fly over the tracks on their way out toward the Pacific. A train had shown up that morning, delaying the launch – something that was very common at the time and




always drove base commanders and their junior officers nuts, but which they were largely powerless to control. When the train arrived, Bradburn sent a message back to the secret satellite operations center in the Pentagon: “Holding for train.” But he soon heard that the train had stopped at the perimeter of the base, which enabled the launch to go forward. He then




sent another message: “Rocket launched.”




Very quickly a rumor spread through the senior levels of the satellite intelligence community that the madman Bradburn had deliberately launched his rocket over a train.



“It took me forever to live that one down,” Bradburn remembered decades later, with relish.

The spacecraft launched that day was code-named Quill, and it was the first radar imaging satellite – and also the last one for a long time. The NRO built three of them, two flight models and a bench model for testing. Quill was not a big satellite. Launched




on a Thor-Agena rocket, it weighed




no more than 1,400 kilograms, most of which was taken up by the Agena upper stage that stabilized and powered the payload in orbit. It was placed into an unusual orbit inclined 70 degrees to the equator and slightly elliptical at 238 by 264 kilometers.



Although still highly classified to this day, the Quill program probably started soon after President John F. Kennedy took office in January 1961. Kennedy’s predecessor, Dwight D.




Eisenhower, had opposed the development of a radar satellite because he was concerned that its transmissions could be interpreted as a hostile act by the Soviet Union. Kennedy did not have such qualms, and also had the precedent of numerous photoreconnaissance




satellite missions over the Soviet Union.



Quill did not transmit its data to the ground. Instead, the radar returns were recorded onboard the spacecraft, probably on movie film –




a common method then used in aircraft for recording radar data. The film was then




ejected aboard a re-entry capsule that was




captured




by an Air Force C-130 transport aircraft as it




parachuted down. The




film retrieval




method




and




equipment were




by then well-tested: The Corona photographic reconnaissance




satellites used it, as did the more powerful Gambit high-resolution satellites that had only recently entered service.

Given




its altitude,




small size




and




limited power, Quill undoubtedly had very low resolution. At best it




only would have been able to detect terrain




features




and perhaps ships. Such data could have limited utility for mapping




or determining if the Soviet fleet was in port. But a second major limitation was timeliness. Quill’s capsule re-entered four days after launch, on Christmas Day.




It




then spent at least another day or two in transit to the processing facility and then to Washington.

After the mission




, the remaining Quill vehicle and the




test vehicle were placed in storage, and it is unclear if they still exist today in some classified warehouse




or were destroyed decades ago.

It was not until the late




1970s that another radar satellite was launched. This was a NASA satellite named SeaSat. Although this was an environmental mission, according to Jeffrey Richelson and Desmond Ball’s 1990 book, “The Ties that Bind,” the Department of Defense partially funded the satellite and the data was analyzed by the U.S. Navy.





Unfortunately, the satellite failed in orbit




and never had the opportunity to demonstrate all its capabilities.



But by the late 1970s the




Air Force component within the NRO




argued that technology had sufficiently advanced that a new radar satellite could be built. That program, initially named Onyx, but later given its more famous designation, Lacrosse, used a much more powerful radar and a new




technique that assembled multiple radar returns into a single highly




detailed image. It also beamed its information through another satellite in a much higher orbit, enabling the data




to reach users in a matter of minutes. The bureaucratic battle to get Lacrosse funded was a fierce one, and it was not until December 1988 that the first satellite was launched aboard the Space Shuttle Atlantis. The launch went into a high inclination orbit, one of the highest ever flown by a shuttle. But fortunately, it did not have to fly over a train.