VLT Interferometer Measures the Size of Proxima Centauri and Other Nearby Stars [1]

Summary

At a distance of only 4.2 light-years, Proxima Centauri is the nearest star to the Sun currently known [2]. It is visible as an 11-magnitude object in the southern constellation of Centaurus and is the faintest member of a triple system, together with Alpha Centauri, the brightest (double) star in this constellation.

Proxima Centauri is a very-low-mass star, in fact barely massive enough to burn hydrogen to helium in its interior. It is about seven times smaller than the Sun, and the surface temperature is “only” about 3000 degrees, about half of that of our own star. Consequently, it is also much fainter – the intrinsic brightness is only 1/150th of that of our Sun.

Low-mass stars are very interesting objects, also because the physical conditions in their interiors have much in common with those of giant planets, like Jupiter in our solar system. A determination of the sizes of the smallest stars has been impossible until now because of their general faintness and lack of adequate instrumentation. However, astronomers have long been keen to move forward in this direction, since such measurements would provide indirect, crucial information about the behaviour of matter under extreme conditions.

When the first observations with the VLT Interferometer (VLTI), combining the light from two of the 8.2-m VLT Unit Telescopes (ANTU and MELIPAL), were made one year ago (ESO PR 23/01), interferometric measurements were also obtained of Proxima Centauri. They formed part of the VLTI commissioning and the data were soon released to the ESO community, cf. the special website.

Now, an international team of astronomers from the Geneva Observatory (Switzerland), ESO/Chile and the Canada-France-Hawaii Telescope (CFHT) has successfully analysed these observations by means of newly developed, advanced software. For the first time ever, they obtained a highly accurate measurement of the size of such a small star.

Three other small stars were also measured and the results are in excellent agreement with stellar theory, indicating that our present understanding of the structure and composition of very small stars is reasonably correct. More VLTI observations are soon to follow, eventually also of even smaller objects, like Brown Dwarfs.

PR Photo 27a/02: Proxima Centauri, the nearest star known.
PR Photo 27b/02: The “Hertzsprung-Russell (HR)” diagram of stars
PR Photo 27c/02: Diameters and masses of small stars.
PR Photo 27d/02: Interferometric fringes at VLTI/VINCI of the small star GJ 887.