SAN FRANCISCO — Few people had heard of Space Ground Amalgam before the company won the grand prize in the Space Frontier Foundation’s NewSpace business plan competition. Since company President Rick Sanford claimed the $100,000 prize on July 28, however, he has received hundreds of phone calls and emails from prospective customers, partners, suppliers, investors and employees.

“There were over 70 inquires in the first 72 hours alone,” said Sanford, who entered the competition to focus efforts under way within Space Ground Amalgam to offer inflatable large-aperture antennas through its Space Inflatables Division. “I was very surprised at the level of response.”

Space Ground Amalgam, a small business based in Bozeman, Mont., with an office in Colorado Springs, Colo., is working with partners, including L’Garde Inc. of Tustin, Calif., to offer antennas designed be stored in compact containers during launch, then inflated and hardened once on orbit. The concept relies on recent advances in shaped polymers and nanomaterials to produce lightweight antennas that can be deployed in space and hardened to withstand the impact of small pieces of orbital debris and micrometeoroids, Sanford said.

 Space Ground Amalgam LLC at a Glance

 Established: 2009

 Locations: Bozeman, Mont.; Colorado Springs, Colo.

 Top Official: Rick Sanford, president

 Employees: 5

 Mission: To help customers achieve and sustain a competitive advantage in the constantly changing global marketplace.

L’Garde began investigating potential applications for inflatable space antennas during the 1980s. At that time, engineers determined that it would be difficult to maintain pressure in the inflatables during long missions without a large supply of gas since micrometeoroids would puncture holes in the structures. Engineers resolved that problem by developing polyurethane resins designed to harden at various temperatures. A resin can be inserted between layers of the fabric used to create the inflatable structure. Once on orbit, the stowed fabric structure can be heated to the specific temperature that makes the resin soft during deployment. It then can be inflated and allowed to cool and harden in space, said Gordon Veal, a retired L’Garde vice president who serves on the company’s board of directors.

L’Garde plans to demonstrate that concept in 2014. L’Garde engineers are building a 1,200-square-meter solar sail for a NASA technology demonstration mission. L’Garde also built the Inflatable Antenna Experiment, a 14-meter parabolic dish antenna that was inflated on-orbit in 1996 after being launched from the Space Shuttle Endeavour during its STS-77 mission. That structure did not include resin to make it rigid. However, L’Garde provided inflatable booms that became rigid in orbit for the Department of Defense Space Test Program’s 2004 Cibola flight experiment, said Nathan Barnes, L’Garde chief operating officer and executive vice president.

One of the challenges in developing inflatable antennas is finding ways to make antenna surfaces smooth enough to meet mission requirements. Unlike the mirrors destined for NASA’s James Webb Space Telescope, which industry teams can polish for years, mirrors included in inflatable antennas have defects that have to be tolerated, Barnes said. Some defects can be corrected using software that identifies imperfections and applies appropriate mitigation techniques, said Arthur Palisoc, L’Garde vice president and engineering director.

That ability to use software to correct for the uneven surfaces of large antennas is an important element of Space Ground Amalgam’s plan, said Mark Bünger, research director for San Francisco-based Lux Research, who served as Space Ground Amalgam’s coach for the NewSpace business plan competition. “The basic idea of inflatable antennas has been around for years, but the primary sticking point has been the problem of creating smooth surfaces,” Bünger said. “They are addressing that with software.”

Since the NewSpace competition, Space Ground Amalgam officials have been meeting with potential partners and customers. Sanford has held discussions with representatives of two NASA field centers about establishing Space Act Agreements to guide joint efforts to explore the utility of inflatable structures. Sanford declined to name the NASA centers because the agreements have not yet been signed, but said those discussions are an indication that the overall concept “resonates well within NASA.”

In addition, Israeli satellite fleet operator Space Communications Ltd. and two U.S. companies have expressed interest in Space Ground Amalgam’s inflatable antenna technology. Sanford declined to name the U.S. companies.

Before the NewSpace competition, Space Ground Amalgam submitted five proposals seeking NASA funding for a variety of technology development efforts. Company officials also are drafting plans to test an inflatable antenna in 2015 on the external platform that Houston-based NanoRacks LLC and Astrium North America are preparing to install on the international space station. That type of testing will allow Space Ground Amalgam to demonstrate its ability to make inflatable antennas rigid, map the surface of an antenna and analyze its performance, Sanford said.

Until early 2012, Sanford was Space Ground Amalgam’s sole employee. Since then, he has hired four people and established nondisclosure agreements with 14 additional engineers, program managers and business development specialists who have the knowledge and expertise to join the firm quickly if they are needed to support new contracts, Sanford said.

Sanford founded Space Ground Amalgam in 2009 after leaving Cisco Systems, where he led space initiatives in the Global Government Solutions Group and served as the chief operating officer of Cisco’s Internet Router in Space program, an initiative funded by Cisco and U.S. Strategic Command to test a Cisco-built router in orbit aboard the Intelsat 14 satellite owned by Intelsat of Luxembourg and Washington. Sanford also is the chief executive of Google Lunar X Prize contender Odyssey Moon Ltd.

Debra Werner is a correspondent for SpaceNews based in San Francisco. Debra earned a bachelor’s degree in communications from the University of California, Berkeley, and a master’s degree in Journalism from Northwestern University. She...