One day in the fall of 2011, Neil Sheeley, a solar scientist at the Naval Research Laboratory in Washington, D.C., did what he always does – look through the daily images of the sun from NASA’s Solar Dynamics Observatory (SDO).

But on this day he saw something he’d never noticed before: a pattern of cells with bright centers and dark boundaries occurring in the sun’s atmosphere, the corona. These cells looked somewhat like a cell pattern that occurs on the sun’s surface — similar to the bubbles that rise to the top of boiling water — but it was a surprise to find this pattern higher up in the corona, which is normally dominated by bright loops and dark coronal holes.

Sheeley discussed the images with his Naval Research Laboratory colleague Harry Warren, and together they set out to learn more about the cells. Their search included observations from a fleet of NASA spacecraft called the Heliophysics System Observatory that provided separate viewpoints from different places around the sun. They describe the properties of these previously unreported solar features, dubbed “coronal cells,” in a paper published online in The Astrophysical Journal on March 20, 2012 that will appear in print on April 10.

The coronal cells occur in areas between coronal holes – colder and less dense areas of the corona seen as dark regions in images — and “filament channels” which mark the boundaries between sections of upward-pointing magnetic fields and downward-pointing ones. Understanding how these cells evolve can provide clues as to the changing magnetic fields at the boundaries of coronal holes and how they affect the steady emission of solar material known as the solar wind streaming from these holes.

“We think the coronal cells look like flames shooting up, like candles on a birthday cake,” says Sheeley. “When you see them from the side, they look like flames. When you look at them straight down they look like cells. And we had a great way of checking this out, because we could look at them from the top and from the side at the same time using observations from SDO, STEREO-A, and STEREO-B.”

The locations of STEREO-A, STEREO-B and SDO relative to the sun and Earth in 2011. > View larger
The locations of STEREO-A, STEREO-B and SDO relative to the sun and Earth in 2011. Credit: NRL When the cells were discovered in the fall of 2011, the SDO and the two STEREO (short for Solar Terrestrial Relations Observatory) spacecraft each had widely different views of the sun. Thus, as the 27-day solar rotation carried the coronal cells across the face of the sun, they appeared first in STEREO-B data, then in SDO, and finally in STEREO-A, before starting over again in STEREO-B. In addition, when one observatory looked down directly on the cells, another observatory could see them from the side.

The researchers used time-lapse sequences obtained from the three satellites to track these cells around the sun. When an observatory looked down on one of these areas, it showed the cell pattern that Sheeley first noticed. But when the same region was viewed obliquely, it showed plumes leaning off to one side. Taken together, these two-dimensional images reveal the three-dimensional nature of the cells as columns of solar material extending upward through the sun’s atmosphere, like giant pillars of gas.

To round out the picture even further, the team turned to other instruments and spacecraft. The original SDO images were from its Atmospheric Imaging Assembly, which takes conventional images of the sun. Another instrument on SDO, the Helioseismic and Magnetic Imager (HMI), provides magnetic maps of the sun. The scientists superimposed conventional images of the cells with HMI magnetic field images to determine the placement of the coronal cells relative to the complex magnetic fields of the sun’s surface.

First of all, the magnetic field bundles lay centered inside the cells. This represents a clear distinction between the coronal cells and another well-known phenomenon known as supergranules. Supergranules also appear as a large cell-like pattern on the sun’s surface, and their delineated edges are created as the sideways motion of solar material sweeps weaker magnetic fields toward their boundaries. Supergranules, therefore, appear to have enhanced magnetic fields at their edges, while the coronal cells show them at their centers.

Second, the scientists learned more about how the coronal cells were related to other structures on the sun, in their location between a coronal hole and a nearby filament channel. The cells consistently occurred in areas dominated by magnetic fields that point in a single direction, either up or down. In addition, the fields of the nearby coronal hole are what’s known as “open,” extending far into space without returning to the sun. On the other hand, the field lines in the cells were “closed,” looping up over the filament channel and connecting back down to the sun.

Images