The first detailed global mapping of an asteroid – conducted as part of
NASA’s Near Earth Asteroid Rendezvous (NEAR) mission – has found that most
of the larger rocks strewn across 433 Eros were ejected from a single crater
in a meteorite collision perhaps a billion years ago.

“One big impact spread all this debris,” says NEAR team member Peter Thomas,
a senior researcher in Cornell University’s Department of Astronomy. “This
observation is helping us start answering questions about how things work on
the surface of an asteroid.”

Thomas’ report on the crater – which has the proposed name of Shoemaker – as
a major source of ejected rocks on Eros appears in the Sept. 27 issue of the
of the journal Nature. Thomas’ fellow authors are NEAR team members Joseph
Veverka, imaging team leader and professor of astronomy at Cornell; Mark
Robinson of Northwestern University; and Scott Murchie of The Johns Hopkins
University Applied Physics Laboratory, which managed the NEAR mission for
NASA. The paper is one of three detailing the first findings from the NEAR
Shoemaker spacecraft’s controlled landing on the surface of Eros on Feb. 12,

Before landing, NEAR Shoemaker had orbited Eros for a year, taking thousands
of high-resolution images of the 21-mile-long asteroid. From the global map
of the surface the team assembled, Thomas and his colleagues counted 6,760
rocks larger than about 16 yards across (15 meters) strewn over the
asteroid’s 434 square miles (1,125 square kilometers). They found that
nearly half (44 percent) of these rocks were inside the Shoemaker crater,
positioned near one end of the potato-shaped asteroid. And most of the rocks
of this size along the asteroid’s equator appear to have been ejected from
Shoemaker, Thomas says.

“We know they came from Shoemaker because the mapping of the geography of
the pattern [of the rocks] on the surface closely matches the predicted
paths from the one impact event that made Shoemaker,” he says.

Eros is estimated to be more than 4 billion years old, probably the remnant
of a larger asteroid broken up by a collision with another asteroid. Perhaps
a billion years ago, Eros itself was struck by an object – a meteorite or
small comet – creating a crater nearly 5 miles (7.6 kilometers) wide and
shattering into rocks of all sizes. Some of these rocks “went straight up
and straight down,” says Thomas. Most of the remainder traveled as far as
two-thirds of the way around the rotating asteroid in either direction (the
asteroid rotates once every 5 1/4 hours), finally coming to rest on the

The mystery posed by the Eros maps for the researchers is why the same thing
didn’t happen with two other large craters on Eros: Himeros, the
saddle-shaped depression on the body’s convex side, and Psyche, on the
concave side. Either the rocks have been buried, have been eroded or weren’t
made in the first place, says Thomas.

One of the big surprises from the maps, Robinson reports in his Nature
paper, is that Eros’ surface appears to have a global cover of “loose
fragmental debris.” The surface appears to be blanketed with a fine
material, some of which has created flat deposits, particularly in
depressions, such as craters. These fine deposits, Robinson’s paper reports,
appear to have been sorted from the upper portion of the asteroid’s
regolith, or soil.

These so-called “ponded” deposits were visible in the final images NEAR
Shoemaker transmitted before it touched down. In fact, as Veverka reports in
his paper, “A strong argument is that the last image shows that the
spacecraft landed on or within a few meters of a pond, a landform known to
occur predominantly on the floors of craters.”

How has this sorting occurred? Robinson’s paper postulates an electrostatic
effect, similar to that indicated on the moon’s surface by the Surveyor
spacecraft. Particles can build up photoelectric charges with long exposure
to the sun, and this charge might separate out finer particles, says Thomas.
But he concedes, “This requires a lot of assumptions, and does not explain
all the mechanisms.”

The big question for researchers is: Do these observations of the surface
mechanics of Eros indicate that similar processes are under way on other
astronomical bodies? Veverka notes it is difficult to make comparisons
because no other such distant body has been so closely mapped. There are
high-resolution views of the asteroids Gaspra and Ida and of Phobos, a
satellite of Mars. Phobos, he writes, does show groupings of rocks in the
vicinity of the crater Stickney that are comparable to those on Eros.
“Nothing comparable to the flat ‘pond’ deposits has been noted on Gaspra,
Ida or Phobos, even though Phobos coverage is certainly adequate to show
such features if they were present,” he writes.

In assessing the rock distribution on Eros, Thomas counted about 30,000
rocks. He was able to do this by using software created by Cornell analyst
Jonathan Joseph. The software allows a researcher to mark a rock in an
image, calculate from a shape model the rock’s location and size, and then
record this information in a data file.

Thomas’ report in Nature is titled “Shoemaker crater as the source of most
ejecta blocks on the asteroid 433 Eros.” Veverka’s report, which has several
co-authors, is titled “The landing of the NEAR Shoemaker spacecraft on
asteroid 433 Eros.” Robinson’s report, co-authored by Thomas, Veverka,
Murchie and Brian Carcich of Cornell, is titled “The nature of ponded
deposits on Eros.”

NEAR Shoemaker launched on Feb. 17, 1996 – the first in NASA’s Discovery
Program of low-cost, scientifically focused planetary missions – and became
the first spacecraft to orbit an asteroid on Feb. 14, 2000. The car-sized
spacecraft gathered 10 times more data during its orbit than originally

(From a Cornell University news release.)


The first in NASA’s Discovery Program of low-cost, scientifically focused
planetary missions, NEAR conducted a close-up, yearlong study of asteroid
433 Eros. The Johns Hopkins University Applied Physics Laboratory in Laurel,
Md., designed and built the NEAR Shoemaker spacecraft and managed the NEAR
mission for NASA. For the latest news and images visit the NEAR Web site at For more on NASA’s Discovery Program visit