Malin Space Science Systems (MSSS) has been selected to provide the science payloads for the two Janus spacecraft.  Last week, Janus was approved by NASA to proceed with final design of the mission hardware, including the MSSS cameras (called “JCam”).

The Janus principal investigator is Dr. Daniel Scheeres of the University of Colorado Boulder. The spacecraft will be built and operated by Lockheed Martin. The two Janus spacecraft will be launched in August 2022 on the same Falcon Heavy rocket as NASA’s Psyche spacecraft. They will fly by two small binary asteroids, 1991 VH and 1996 FG3, in March-April 2026.

Each spacecraft will carry a JCam system built by MSSS. JCam consists of an ECAM M50 visible camera and an ECAM IR3 thermal infrared camera, with a DVR4 processing/storage unit with 16 GB of flash memory. It will obtain images of the asteroid targets and also be used for spacecraft navigation and pointing during the flybys. Each complete JCam system weighs less than 3.2 kg and has a maximum power draw of less than 14 watts. These combined visible and thermal infrared imaging capabilities will enable JCam to characterize the current morphology of 1991 VH and 1996 FG3 and to constrain their evolution.   

ECAM systems are flight-proven and currently operating on several missions, including NASA’s OSIRIS-REx asteroid sample-return spacecraft and Northrop-Grumman’s MEV-1 and MEV-2 satellite servicing missions. The development and production of the two JCam systems for Janus is being done under contract to Lockheed Martin for $5.8 million.

MSSS is also building the visible multispectral imaging science cameras for the Psyche mission, which will launch with Janus. Psyche is a NASA Discovery mission, led by Dr. Lindy Elkins-Tanton of Arizona State University and managed by NASA’s Jet Propulsion Laboratory. It will arrive at the main belt asteroid Psyche in 2026.

Dr. Michael Ravine, JCam project manager at MSSS, said, “We are pleased that CU and Lockheed Martin selected MSSS to provide the payload for the two Janus spacecraft. JCam will return high resolution images of these asteroids and map the temperatures of their surfaces. It also means that a single launch will be carrying three spacecraft, going to three different targets, each with two MSSS cameras. That’s a first for us, maybe a first for anybody.”

MSSS has a long history of building and operating science instruments for NASA spacecraft, most recently five cameras on the Perseverance Mars rover, launched in August 2020 and scheduled to land on Mars in February 2021. We are also currently operating three cameras orbiting Mars on Mars Odyssey and Mars Reconnaissance Orbiter, four on the surface of Mars on the Curiosity rover, and one orbiting Jupiter on Juno.


 

ECAM-M50 with NFOV lens, ECAM-IR3, and ECAM-DVR4

Figure 1. An ECAM-M50 (Monochrome) with NFOV (Narrow Field of View) lens (left), ECAM-IR3 (right),
and ECAM-DVR4 (center).  JCam will appear similar to this flight camera system from another program, as JCam
will use the same electronics with different lenses. Pocket knife for scale. Credit Malin Space Science Systems

 

Janus spacecraft

Figure
2.  A rendering of the two Janus spacecraft showing the position of JCam.  The apertures of the JCam visible and
thermal IR cameras project from the inside of the spacecraft along its upper right edge. For scale, the deployed solar
array span is a little less than 9 feet. Credit Lockheed Martin.
MALIN SPACE SCIENCE SYSTEMS, INC.
SAN DIEGO, CA 92191-0148
TELEPHONE: (858) 552-2650, EXT. 500
http://www.msss.com/
Contact: Michael Ravine, ravine@msss.com