For Immediate Release
Contact: David Weymiller
(970) 491-6432
DWeymiller@UR.colostate.edu
FORT COLLINS–A researcher at Colorado State University believes that regional assessments of climate change in the United States and one prepared by a
United Nations panel overlook factors that are critically important to the realism of models of global climate change.
Roger Pielke Sr., professor of atmospheric science, and colleagues have shown in their research that the effect of landscape and human-caused land-use
changes can have a profound effect on climate variability and change. This work calls into question the realism of the climate predictions used in the U.S.
regional, national and international assessments because these factors have not been included in the model.
“If land-use change is as important on the climate system as our results suggest, there is a large uncertainty in the future climate, since there is no evidence that
we can accurately predict the future landscape,” Pielke said.
He maintains that the General Circulation Models used by regional and national U.S. efforts and the UN-sponsored Intergovernmental Panel on Climate
Change only investigate a subset of the effects of greenhouse gases and aerosols. They do not, he said, incorporate other important effects–such as land-use
change and the biological effect of increased carbon dioxide–on climate. As a result, the range of possible climate futures that have been predicted for the 21st
century is almost certainly larger than commonly presented.
“This does not mean that we should not worry about future changes in climate,” Pielke said. “Rather, it should raise serious questions as to our ability to
reliably predict such changes.”
Pielke addressed the 11th Symposium on Global Change at 2:45 p.m. Jan. 10 during the American Meteorological Society annual meeting in Long Beach,
Calif., where a presentation on the U.S. assessment immediately followed. Pielke discussed how landscape–plants, or lack of them– influences the earth’s
energy budget, directly and otherwise, through a variety of effects.
For example, as carbon dioxide concentrations increase, a corresponding increase in plant coverage could increase “transpiration,” which is the release of water
vapor into the atmosphere as a result of plant metabolism. While this water could cool the region’s atmosphere directly or through cloud formation, it also
could increase the amount of water vapor, a radiatively active greenhouse gas.
“This is an example of a complex feedback between vegetation and the atmosphere that we do not completely understand,” Pielke said.
Pielke’s hypothesis that landscape affects the global energy budget (such as the absorption and reflection of sunlight) also is affected by land-use change.
Cutting tropical forests, increasing urban sprawl and converting forest or grasslands to agriculture can alter the amount of sunlight absorbed or reflected and
the amount of water vapor released into the atmosphere by transpiration.
“Since landscape and other atmosphere-surface interactions involve complex, non-linear feedbacks, it becomes impossible to predict accurately future climate,”
Pielke said. “This suggests that the scientific community might be overstating the certainty in the predictive information that is currently being provided to
other researchers and to policy makers.”
-30-