Photos

A team from the University of Pennsylvania has found the answer is ‘yes,’ if the students design and build the robot themselves

In a paper presented last week at the American Society of Mechanical Engineers conference in Las Vegas, researchers from the University of Pennsylvania outlined an effective way of getting students interested and excited about science and engineering–teaching them how to design, build and operate robots. This approach is a departure from traditional science and engineering education methods, and it suggests a new way of getting students attracted to these fields early in their academic lives. Over the past three summers, the University of Pennsylvania’s Department of Mechanical Engineering and Applied Mechanics has developed and taught a three-week robotics summer course as part of the School of Engineering and Applied Science’s Summer Academy of Applied Science and Technology (SAAST)The robotics camp, which was developed with funding by the National Science Foundation (NSF), attracted more than 20 students from across the  world and from as far away as Turkey, China and the United Kingdom to Philadelphia.

NSF Principal Investigator Professor Vijay Kumar, doctoral students David J. Cappelleri and James F. Keller, and technical staff Terry Kientz and Peter Szczesniak designed an intensive program for the students that immediately got them into a robotics lab to learn what robots are capable of and how to build them. Throughout the three weeks, the students heard lectures from leading robotics experts and toured factories that use advanced robots. The students were also divided into teams and spent time each day designing and building their own robots.

Because robots are complex systems that integrate several different fields, including computer science, mechanical engineering and electronics, they are a good example of applied science and engineering. They can also be exciting and fun to build and operate. Robot design competitions are being used at the high school and undergraduate levels to help students understand how these fields can be used to produce real-world applications.

This top-down approach to science and engineering education is the reverse of how these fields are usually introduced to students. The authors note that typically students must go through years of learning theoretical concepts in mathematics, physics, and other fields before they are allowed to think about putting these concepts into practice. Many students, the authors believe, lose interest in these fields because they must wait so long before experiencing the excitement and creativity that comes from finding solutions to intriguing challenges.

To solve this problem, the authors state in the paper that they set out to create an approach to teaching science and engineering where “students are introduced first to the applications and systems concepts which then leads to the teaching of fundamentals.”

At the end of the camp, the teams’ robots competed against each other by navigating an obstacle course that tested how well the robots could maneuver and pick up and store various objects such as plastic eggs and hockey pucks. The competition not only gave the students the opportunity to put what they had learned into action, but also taught them how to work as a group to solve complicated challenges that have many possible solutions. The authors say that some of the participants fr om the first camp are now studying engineering in college, including three former participants who are enrolled at Penn. “This approach to teaching forces us, as educators, to develop lectures and homework exercises tailored to capstone projects as opposed to creating projects that support lectures in the classroom,” Kumar said.

-NSF-

Media Contacts

Dana W. Cruikshank, NSF (703) 292-8070 dcruiksh@nsf.gov

Program Contacts

C.S. George Lee, NSF (703) 292-8930 csglee@nsf.gov

Co-Investigators

Vijay Kumar, GRASP Laboratory, University of Pennsylvania (215) 898-5814 kumar@grasp.upenn.edu

Related Websites

NSF’s Division of Information & Intelligent Systems (IIS): http://www.nsf.gov/div/index.jsp?div=IIS

General Robotics, Automation, Sensing and Perception (GRASP) Lab at the University of Pennsylvania: http://www.grasp.upenn.edu/index.html