Emerging Reconnaissance Strategies to Enable Human Missions to Mars

SpaceNews Webinar

Richard (Rick) Davis
SMD Assistant Director for Science & Exploration
NASA HQ  @RedPlanetRick
Components for the Round-trip Human Journey
Recon Leads to Selecting A Great Landing Site
Recon Reveals Critical Water Resources

300 ft.
### How would a Mars mission use abundant water?

**Highest Water Mass Requirements**

- **Propellant for Mars Ascent Vehicle (MAV)**
  - ~20 tons for a 4-person crew

- **Eventually: Agriculture/Hydroponics**

- **Other major uses:**
  - Crew health, hydration, and hygiene
  - Regulating oxygen, pressure, and humidity
  - Material for construction and radiation shielding
  - Cooling for space suits and equipment
Post-HLS2 Workshop Next Step Accomplishments

- Multiple multi-directorate “next step” activities resulted in significant changes to the knowledge state, with implications for identifying candidate landing sites at the next HLS² workshop (i.e., modified criteria/constraints to test the validity of the EZ concept).

- Several studies commissioned to reduce uncertainties related to water resources, providing some of the most sophisticated understandings of Martian water to date:

  **GLOBAL WATER-ICE MAP** (complete 6/20)
  - Integrates all existing relevant data and models
  - Seeks to determine available water-ice resources in the mid-latitudes and as far equatorward as possible

  **GLOBAL HYDRATED MINERALS MAP** (2/20 completed 2-year contract that built on a 10-year mapping effort)
  - Illustrates that only 30% of Mars can be assessed for the presence of hydrated minerals given dust cover/other mantling, as well as landing-related latitude and elevation constraints
  - Documents uncertainties about abundance given measurement challenges e.g., data for only first few microns of surface; mantling obscures signature detection in many places, unknown structure of minerals (i.e., hard material or one that crumbles, the latter of which is better for ISRU) etc.
MARS WATER ISRU PLANNING (M-WIP) STUDY (4/16)
- Highlighted knowledge gaps for systems to access and extract water
- Characterized the potential of water-ice and hydrated-mineral ISRU systems to meet estimated human mission water demands
- First attempt to evaluate potential ISRU systems: mass, power, and operational complexity

TRADE STUDY ON WATER ISRU (7/16)
- Rodriguez Well (Rodwell) approach for water-ice resources determined potentially best approach
- a hole in the ice slowly expanded by melting and pumping water out
- most efficient re. power even if the water-ice feedstock is up to 50 km from the main ISRU plant/MAV
- while significantly higher mass, given the power savings, still the best option
- operational complexity being studied based on use in Antarctica, modified for the Martian environment

MARS GEOGRAPHIC INFORMATION SYSTEMS (GIS) WORKSHOP (1/17) & COMMUNITY SURVEY (12/19)
- Assessed the state of Mars GIS systems and solicited feedback from the Mars GIS and HLS² communities on tasks to meet landing-site-selection needs
- Created a steering committee to develop detailed task statements based on community input
- Completed extensive community survey that provided data on the community’s capabilities, assessed needs, and collected ideas on data tools and displays for EZ characterization and evaluation
Potentially Needed Recon Thrusts
From the International Mars Exploration Working Group

MARS
SAMPLE RETURN
Achieve Decadal Priorities

Make History: the 1st Roundtrip Demonstration

Confirm the mechanical properties of the regolith/dust
- abrasiveness, oxidizing potential, particle size etc.
- how it will interact with surface systems (suits, rovers, habitats)
- potential human health hazards (toxicity, respiratory, potential extent life)

WATER RECONNAISSANCE

- Ease of Access -

Identify Near-surface Ice
Assess Potential of Hydrated Minerals
Groundtruthing

SPECIAL REGIONS DRILL

Search for Life
- for ISRU
- for human use

Next-gen High-Res Imaging (Visual, IR, Radar)
- Target 80% Planetary Coverage
- Compactness of Surface
- Support Change Detection
- Rock Count/Terrain Roughness
- Slope

Next-gen Communications
- Increased Data Rate
- Support Small Missions
- Support Change Detection
- Greater Access to Surface Assets (Data & Communications)

Next-gen Weather (Orbital & Surface)
- Density Profiles (EDL)
- Winds Aloft
- Potential Microbial Transport
Mars is a Human Effort

We Need Ideas
For more information contact us:
http://www.nasa.gov/journeytomars/mars-exploration-zones

Twitter: @RedPlanetRick

JOIN OUR MAIL LIST:
NASA-Mars-Exploration-Zones@mail.nasa.gov