NASA officially is beginning work on an astrophysics mission designed to help unlock the secrets of the universe — the Wide-Field Infrared Survey Telescope (WFIRST).
With a view 100 times bigger than that of NASA’s Hubble Space Telescope, WFIRST will aid researchers in their efforts to unravel the secrets of dark energy and dark matter, and explore the evolution of the cosmos. It will also discover new worlds outside our solar system and advance the search for worlds that could be suitable for life.

NASA’s Agency Program Management Council, which evaluates the agency’s programs and projects on content, risk management, and performance, made the decision to move forward with the mission on Wednesday.

“WFIRST has the potential to open our eyes to the wonders of the universe, much the same way Hubble has,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate at NASA Headquarters in Washington, D.C. “This mission uniquely combines the ability to discover and characterize planets beyond our own solar system with the sensitivity and optics to look wide and deep into the universe in a quest to unravel the mysteries of dark energy and dark matter.”

WFIRST is the agency’s next major astrophysics observatory, following the launch of the James Webb Space Telescope in 2018. The observatory will survey large regions of the sky in near-infrared light to answer fundamental questions about the structure and evolution of the universe, and expand our knowledge of planets beyond our solar system — known as exoplanets.

“As a general-purpose observatory, astronomers will use WFIRST to create panoramic views of the universe,” said Jason Kalirai of the Space Telescope Science Institute (STScI) in Baltimore, Maryland, who is one of the members of the WFIRST Formulation Science Working Group (FSWG). “These new windows on our solar system, the Milky Way galaxy, and the distant universe will yield fundamental progress in many astrophysical topics.”

It will carry a wide-field instrument for surveys, and a coronagraph instrument designed to block the glare of individual stars and reveal the faint light of planets orbiting around them. By blocking the light of the host star, the coronagraph instrument will enable detailed measurements of the chemical makeup of planetary atmospheres. Comparing these data across many worlds will allow scientists to better understand the origin and physics of these atmospheres, and search for chemical signs of environments suitable for life.

“The coronagraph will provide us an entirely new window for the detection of planets around other stars, and for the study of their atmospheres,” said STScI’s Nikole Lewis, another member of the FSWG. “It will also develop technology that will pave the way for finding and characterizing Earth-like planets in the future.”

“WFIRST is designed to address science areas identified as top priorities by the astronomical community,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington, D.C. “The wide-field instrument will give the telescope the ability to capture a single image with the depth and quality of Hubble, but covering 100 times the area. The coronagraph will provide revolutionary science, capturing the faint, but direct images of distant gaseous worlds and super-Earths.”

The telescope’s sensitivity and wide view will enable a large-scale search for exoplanets by monitoring the brightness of millions of stars in the crowded central region of our galaxy. The survey will net thousands of new exoplanets similar in size and distance from their star as those in our own solar system, complementing the work started by NASA’s Kepler mission and the upcoming work of the Transiting Exoplanet Survey Satellite.

Employing multiple techniques, astronomers also will use WFIRST to track how dark energy and dark matter have affected the evolution of our universe. Dark energy is a mysterious, negative pressure that has been speeding up the expansion of the universe. Dark matter is invisible material that makes up most of the matter in our universe.

By measuring the distances of thousands of supernovae, astronomers can map in detail how cosmic expansion has increased with time. WFIRST also can precisely measure the shapes, positions, and distances of millions of galaxies to track the distribution and growth of cosmic structures, including galaxy clusters and the dark matter accompanying them.

“In addition to its exciting capabilities for dark energy and exoplanets, WFIRST will provide a treasure trove of exquisite data for all astronomers,” said Neil Gehrels, WFIRST project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This mission will survey the universe to find the most interesting objects out there.”

WFIRST is slated to launch in the mid-2020s. The observatory will begin operations after traveling to a gravitational balance point known as Earth-Sun L2, which is located about one million miles from Earth in a direction directly opposite the Sun.

WFIRST is managed at Goddard, with participation by the Jet Propulsion Laboratory (JPL) in Pasadena, California; the Space Telescope Science Institute (STScI) in Baltimore, Maryland; the Infrared Processing and Analysis Center (IPAC), also in Pasadena; and a science team comprised of members from U.S. research institutions across the country. The leading members of the science team, together with NASA and science center representatives, make up the FSWG.

“The WFIRST mission will provide tremendous synergy with Hubble and Webb,” STScI director Ken Sembach said. “It will extend the legacy of Hubble-quality imaging to much wider fields, and will likely find many unique objects suitable for detailed follow-up study by Webb.”

STScI is the science operations center for both the Hubble and Webb telescopes. It will also be a partner in the WFIRST science center, sharing science operations responsibilities with Goddard and IPAC. STScI astronomers are also represented on the WFIRST science team and the FSWG.

During the mission formulation phase, STScI’s work will focus on the mission’s observation scheduling system, wide-field imaging data processing system, and the data archive. The Barbara A. Mikulski Archive for Space Telescopes (MAST) at STScI already holds the astronomical data from some 20 astronomy missions, and the addition of the WFIRST data will add considerably to its scientific discovery potential.

“We are proud that NASA has made us a partner in this revolutionary new mission,” said Roeland van der Marel, the WFIRST mission lead at STScI. “Our expertise with the Hubble and Webb space telescopes puts us in a unique position to support the science teams and the astronomical community, and to make this mission a success. The new observations and discoveries are guaranteed to be spectacular.”

More information: